Name \qquad Date \qquad

Make a model and record the multiplication and division equation for each situation.

1. How many $\frac{3}{5}$ portions are in $\frac{33}{10}$?

a) Describe a real-world situation that matches the model
b) What does the fraction in the quotient represent?
2. How many $\frac{3}{8}$ portions are in $1 \frac{3}{4}$?

Multiplication Equation:	Division Equation:

a) Describe a real-world situation that matches the model
b) What does the fraction in the quotient represent?
3. $\frac{5}{6} \div \frac{2}{3}=$

a) Describe a real-world situation that matches the model.
b) What does the fraction in the quotient represent?
4. $\frac{2}{3} \div \frac{5}{6}=$

Multiplication Equation:	Division Equation:

a) Describe a real-world situation that matches the model.
b) What does the fraction in the quotient represent?
5. Compare the quotients for \#3 and \#4. What do you notice?

Make a model and record the multiplication and division equation for each situation.

1. How many $\frac{3}{5}$ portions are in $\frac{32}{10}$?

The line is partitioned into 32 sections. $3 / 5$ is equivalent to $6 / 10$. Use an arrow to show where $3 / 5$ is located on the number line. Continue to use arrows to indicate each portion of $3 / 5$. Since there are 5 arrows, the result is a mixed number that includes 5 whole portions and $1 / 3$ of another portion. Both responses would be correct, as they are equivalent.

Multiplication Equation:	Division Equation:
$? \times \frac{3}{5}=\frac{33}{10}$	$\frac{33}{10} \div \frac{3}{5}=5 \frac{2}{3}$

a) Describe a real-world situation that matches the model. Answers will vary.
b) What does the fraction in the quotient represent?

If you look at the model you can see that there are 2 more tenths remaining on the number line until $32 / 10$ is reached. It also represents that 1 of the 3 portions are shown on the number line before another whole leap of $3 / 5$.

Partition the line into fourths to indicate $13 / 4$ on the number line. Then partition the number line into eights. Use an arrow to indicate a portion of $3 / 8$. Continue using arrows to indicate portions of $3 / 8$ until you get as close to $13 / 4$ as possible without passing it. There are 4 whole leaps and 2 more sections of the 3 sections needed for another leap of 3/8.

Multiplication Equation:	Division Equation:
$? \times \frac{3}{8}=1 \frac{3}{4}$	$1 \frac{3}{4} \div \frac{3}{8}=4 \frac{2}{3}$

a) Describe a real-world situation that matches the model.
b) What does the fraction in the quotient represent? It represents that 2 of the 3 portions are shown on the number line before another whole leap of $3 / 8$.
3. $\frac{5}{6} \div \frac{2}{3}=$

Partition the line into sixths and indicate the location of $5 / 6$. Then make an arrow to indicate a leap of $2 / 3$. Since $2 / 3$ is before the $5 / 6$ you have 1 whole leap and 1 more section of the 4 needed to make another leap of $2 / 3$ on this number line.

Multiplication Equation:	Division Equation:
$? \times \frac{2}{3}=\frac{5}{6}$	$\frac{5}{6} \div \frac{2}{3}=1 \frac{1}{4}$

a) Describe a real-world situation that matches the model. Answers will vary.
b) What does the fraction in the quotient represent? There is 1 section of the 4 needed to make a leap of $2 / 3$. This can be seen by counting the number of sections between the $2 / 3$ mark and the $5 / 6$ mark compared to the 4 sections shown by the arrow.
4. $\frac{2}{3} \div \frac{5}{6}=$

Partition the number line into thirds and note where $2 / 3$ is located. Then partition the number line into sixths and note where $5 / 6$ is located. $2 / 3$ is 4 units of the 5 units needed to be at the point for $5 / 6$. Therefore $2 / 3 \div 5 / 6$ is $4 / 5$.

Multiplication Equation:	Division Equation:
$? \times \frac{5}{6}=\frac{2}{3}$	$\frac{2}{3} \div \frac{5}{6}=\frac{4}{5}$

a) Describe a real-world situation that matches the model. Answers will vary.
b) What does the fraction in the quotient represent? The quotient is $4 / 5$, which is less than 1 . The $2 / 3$ point is $4 / 5$ of the way to the $5 / 6$ point on the number line.
5. Compare the quotients for \#3 and \#4. What do you notice? The dividend is greater than the divisor in \#3, and the quotient is greater than $1 . \ln \# 4$, the dividend is less than the divisor, and the quotient is less than 1.

